metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xu Wen,^a Jing Min Shi^b* and Zhang Xia^b

^aSchool of Environment and Engineering, Shandong Institute of Architecture and Engineering, Jinan 250101, People's Republic of China, and ^bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail: shijingmin@beelink.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.035 wR factor = 0.097 Data-to-parameter ratio = 11.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetraaquabis(isothiocyanato)manganese(II) bis(2-methylpyrazine-1,4-dioxide)

In the title molecular complex, $[Mn(NCS)_2(H_2O)_4]$ -2C₅H₆N₂O₂, the manganese(II) atom has a slightly distorted octahedral coordination, formed by four O atoms from the water molecules and two N atoms from the thiocyanate anions. The Mn complrx lies on a special position of site symmetry 2 and $\overline{1}$, and the 2-methylpyrazine-1,4-dioxide molecule is located on a mirror plane. The crystal packing is stabilized by intermolecular OH(water)···O \leftarrow N hydrogen bonds.

Received 21 March 2005 Accepted 6 April 2005 Online 16 April 2005

Comment

In the title molecular complex, (I), the manganese(II) atom is coordinated by four O atoms from the water molecules and two N atoms from the thiocyanate anions. Atom Mn1 lies on a twofold axis and an inversion centre. The Mn1–O3 and Mn1– N3 bond lengths are 2.1918 (14) Å and 2.188 (3) Å, respectively; the manganese(II) atom has a slightly distorted octahedral coordination. The non-H atoms of the 2methylpyrazine-1,4-dioxide molecules lie on mirror planes. In the crystal structure, the 2-methylpyrazine-1,4-dioxide molecules are packed as columns along the *b* axis, with the manganese(II) complexes positioned between the columns. The crystal packing (Fig. 2) is stabilized by intermolecular OH(water)···O←N hydrogen bonds (Table 1).

Experimental

To 15 ml of an aqueous solution of $Mn(ClO_4)_2 \cdot 6H_2O$ (0.1425 g, 0.394 mmol) and sodium thiocyanate (0.0652 g, 0.804 mmol), 2methylpyrazine-1,4-dioxide (0.0511 g, 0.405 mmol) was added. The resulting solution was stirred for a few minutes. Colorless single crystals were obtained after the solution was allowed to stand at room temperature for three weeks.

 ${\ensuremath{\mathbb C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

$$\begin{split} & [\mathrm{Mn}(\mathrm{NCS})_2(\mathrm{H_2O})_4]\cdot 2\mathrm{C_3H_6N_2O_2} \\ & M_r = 495.40 \\ & \mathrm{Monoclinic}, \ C2/m \\ & a = 17.027 \ (6) \ \mathrm{\AA} \\ & b = 6.828 \ (3) \ \mathrm{\AA} \\ & c = 10.126 \ (4) \ \mathrm{\AA} \\ & \beta = 111.844 \ (4)^\circ \\ & V = 1092.7 \ (8) \ \mathrm{\AA}^3 \\ & Z = 2 \end{split}$$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.848, T_{\max} = 0.911$
2787 measured reflections

Refinement

rtejintententi	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0634P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.035$	+ 0.3225P],
$wR(F^2) = 0.097$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
1103 reflections	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
93 parameters	$\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

 $D_x = 1.506 \text{ Mg m}^{-3}$

Cell parameters from 2372

Mo $K\alpha$ radiation

reflections $\theta = 2.6-26.9^{\circ}$

 $\mu = 0.84~\mathrm{mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.028$

 $\theta_{\rm max} = 25.5^{\circ}$

 $h = -20 \rightarrow 14$ $k = -8 \rightarrow 8$ $l = -10 \rightarrow 12$

Prism, colorless

 $0.20 \times 0.15 \times 0.11 \ \mathrm{mm}$

1103 independent reflections 1026 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bonding	geometry	(Å,	°).
------------------	----------	-----	-----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O3 - H7A \cdots O2^{i} \\ O3 - H6B \cdots O1^{ii} \end{array}$	0.89 0.82	1.84 1.96	2.716 (2) 2.748 (2)	170 162

Symmetry codes: (i) -x, 1 - y, -z; (ii) $\frac{1}{2} - x$, $\frac{1}{2} - y$, -z.

The methyl H atoms (H4A and H5B) and atom H7A from the coordinated water molecule were found in a difference Fourier map. The rest of the H atoms were positioned geometrically. All H atoms were included in the final cycles of the refinement using a riding model (C-H = 0.93–0.97 Å, O-H = 0.82–0.89 Å, $U_{\rm iso}$ (H) = 1.2–1.5 $U_{\rm eq}$ of the carrier atom).

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2001); software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation of China (No. 20271043) and the Natural Science Foundation of Shandong Province of China (No. Y2002B10) for financial support.

Figure 1

View of (I), showing 30% probability displacement ellipsoids. [Symmetry codes: (i) -x, -y, -z; (ii) x, -y, z; (iii) -x, y, -z].

Figure 2

The packing of (I). The intermolecular $O-H\cdots O$ hydrogen bonds are indicated by dashed lines.

References

- Bruker (1997). *SMART* (Version 5.6) and *SAINT* (Version 5.06A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.